HIL testing is an essential step in the verification process of the Model-Based Design (MBD) approach. HIL testing is usually the last step before testing in the field and after Model-In-the-Loop (MIL), Software-In-the-Loop (SIL) or Chipset-In-the-Loop (CIL). This step is critical because it involves all the hardware and software that will be used ...
Orolia Releases New Skydel GNSS Simulation Software Upgrade Featuring Advanced Hardware-in-the-Loop Testing Solution Skydel 22.5 Brings Very-Low to Zero-Effective-Latency and Enhanced Visualization Tools Orolia has released Skydel 22.5, a significant software upgrade to its Skydel simulation product line that features advanced Hardware-in-the-Loop ...
Description GNSS signal spoofing consists of broadcasting fake signals –over the real GNSS signals– in order to take control of a GNSS receiver that will continue to track those signals in error. GNSS is very sensitive to this type of attack due to the weakness of satellite signals at the earth's surface and the fact that these signals are public a...
Problems it Solves When testing self-driving and driving assistance systems, GNSS simulators can generate a signal to represent the vehicle. But how those vehicles interact with other vehicles with different trajectories and speeds, handle scenarios like crash avoidance, and perform in GPS and GNSS-denied environments can make all the difference in...
GNSS is well-known for its ability to provide a position with sub-meter accuracy. However, it is less well-known that GNSS provides a very convenient way of obtaining nanosecond (or even sub-nanosecond) timing accuracy via a GNSS receiver. Indeed, in addition to the three spatial dimensions, GNSS enables the user to compute the clock bias and the d...